
Pham 106843

*	\ \	ک ۲	D	x	6	
D. Ctrob						
Z. STOD	2: Strobi 0_54 + 5					

N	<u> </u>	v °5	3	x
3: TM4	45 + 1			

<u> </u>	V У	×	6
4: BoosiSeason_50			

Note: Tracks are now grouped by subcluster and scaled. Switching in subcluster is indicated by changes in track color. Track scale is now set by default to display the region 30 bp upstream of start 1 to 30 bp downstream of the last possible start. If this default region is judged to be packed too tightly with annotated starts, the track will be further scaled to only show that region of the ORF with annotated starts. This action will be indicated by adding "Zoomed" to the title. For starts, yellow indicates the location of called starts comprised solely of Glimmer/GeneMark auto-annotations, green indicates the location of called starts with at least 1 manual gene annotation.

Pham 106843 Report

This analysis was run 04/28/24 on database version 559.

Pham number 106843 has 10 members, 1 are drafts.

Phages represented in each track:

• Track 1 : ZoeJ_49

• Track 2 : Strobilo_54, Milly_50, DismalFunk_50, DismalStressor_50,

Marcoliusprime_50, Findley_50

• Track 3 : TM4_45, Mufasa_50

• Track 4 : BoostSeason_50

Summary of Final Annotations (See graph section above for start numbers):

The start number called the most often in the published annotations is 1, it was called in 9 of the 9 non-draft genes in the pham.

Genes that call this "Most Annotated" start: • BoostSeason_50, DismalFunk_50, DismalStressor_50, Findley_50, Marcoliusprime_50, Milly_50, Mufasa_50, Strobilo_54, TM4_45, ZoeJ_49,

Genes that have the "Most Annotated" start but do not call it:

•

Genes that do not have the "Most Annotated" start:

•

Summary by start number:

Start 1:

• Found in 10 of 10 (100.0%) of genes in pham

Manual Annotations of this start: 9 of 9

• Called 100.0% of time when present

• Phage (with cluster) where this start called: BoostSeason_50 (K2), DismalFunk_50 (K2), DismalStressor_50 (K2), Findley_50 (K2), Marcoliusprime_50 (K2), Milly_50 (K2), Mufasa_50 (K2), Strobilo_54 (K2), TM4_45 (K2), ZoeJ_49 (K2),

Summary by clusters:

There is one cluster represented in this pham: K2

Info for manual annotations of cluster K2: •Start number 1 was manually annotated 9 times for cluster K2.

Gene Information:

Gene: BoostSeason_50 Start: 37664, Stop: 37885, Start Num: 1 Candidate Starts for BoostSeason_50: (Start: 1 @37664 has 9 MA's), (2, 37700), (3, 37712), (4, 37763), (6, 37874),

Gene: DismalFunk_50 Start: 38098, Stop: 38316, Start Num: 1 Candidate Starts for DismalFunk_50: (Start: 1 @38098 has 9 MA's), (2, 38134), (3, 38146), (4, 38194), (5, 38269),

Gene: DismalStressor_50 Start: 38098, Stop: 38316, Start Num: 1 Candidate Starts for DismalStressor_50: (Start: 1 @38098 has 9 MA's), (2, 38134), (3, 38146), (4, 38194), (5, 38269),

Gene: Findley_50 Start: 38091, Stop: 38309, Start Num: 1 Candidate Starts for Findley_50: (Start: 1 @38091 has 9 MA's), (2, 38127), (3, 38139), (4, 38187), (5, 38262),

Gene: Marcoliusprime_50 Start: 38098, Stop: 38316, Start Num: 1 Candidate Starts for Marcoliusprime_50: (Start: 1 @38098 has 9 MA's), (2, 38134), (3, 38146), (4, 38194), (5, 38269),

Gene: Milly_50 Start: 38071, Stop: 38289, Start Num: 1 Candidate Starts for Milly_50: (Start: 1 @38071 has 9 MA's), (2, 38107), (3, 38119), (4, 38167), (5, 38242),

Gene: Mufasa_50 Start: 37652, Stop: 37873, Start Num: 1 Candidate Starts for Mufasa_50: (Start: 1 @37652 has 9 MA's), (2, 37688), (3, 37700), (4, 37751),

Gene: Strobilo_54 Start: 38073, Stop: 38291, Start Num: 1 Candidate Starts for Strobilo_54: (Start: 1 @38073 has 9 MA's), (2, 38109), (3, 38121), (4, 38169), (5, 38244),

Gene: TM4_45 Start: 32456, Stop: 32677, Start Num: 1 Candidate Starts for TM4_45: (Start: 1 @32456 has 9 MA's), (2, 32492), (3, 32504), (4, 32555),

Gene: ZoeJ_49 Start: 37545, Stop: 37769, Start Num: 1 Candidate Starts for ZoeJ_49: (Start: 1 @37545 has 9 MA's), (3, 37593), (4, 37647),